Importing receptor data into scirpy#

Hide code cell content
# This cell is for development only. Don't copy this to your notebook.
%load_ext autoreload
%autoreload 2
import anndata

anndata.logging.anndata_logger.addFilter(
    lambda r: not r.getMessage().startswith("storing") and r.getMessage().endswith("as categorical.")
)

# Temporarily suppress FutureWarnings
import warnings

warnings.simplefilter(action="ignore", category=FutureWarning)
import tarfile
import warnings
from glob import glob

import anndata
import matplotlib.pyplot as plt
import muon as mu
import pandas as pd
import scanpy as sc
import scirpy as ir

sc.set_figure_params(figsize=(4, 4))
sc.settings.verbosity = 2  # verbosity: errors (0), warnings (1), info (2), hints (3)

In this notebook, we demonstrate how single-cell AIRR-data can be imported into an AnnData object and merged with gene expression data in a MuData container for the use with Scirpy. To learn more about how AIRR data is represented in AnnData, check out the data structure section.

Important

The scirpy data model

Since v0.13, there are no restrictions on the AIRR data that can be stored in the scirpy data structure, except that each receptor chain needs to be associated with a cell. However, for all analyses, the assumptions of the receptor model still apply:

  • BCR and TCR chains are supported. Chain loci must be valid Chain locus, i.e. one of TRA, TRG, IGK, or IGL (chains with a VJ junction) or TRB, TRD, or IGH (chains with a VDJ junction).

  • Each cell can contain up to two VJ and two VDJ chains (Dual IR). Excess chains are ignored (those with lowest read count/UMI count) and cells flagged as Multichain-cell.

  • Non-productive chains are ignored. CellRanger, TraCeR, and the AIRR rearrangment format flag these cells appropriately. When reading custom formats, you need to pass the flag explicitly or filter the chains beforehand.

The index_chains() function chooses the appropriate chains for each cell according to this model and stores references to those chains in adata.obsm.

Note

AIRR quality control

  • After importing the data, we recommend running the scirpy.tl.chain_qc() function. It will 1. identify the Receptor type and Receptor subtype and flag cells as ambiguous that cannot unambigously be assigned to a certain receptor (sub)type, and 2. flag cells with orphan chains (i.e. cells with only a single detected cell) and multichain-cells (i.e. cells with more than two full pairs of VJ- and VDJ-chains).

  • We recommend excluding multichain- and ambiguous cells as these likely represent doublets

  • Based on the orphan chain flags, the corresponding cells can be excluded. Alternatively, these cells can be matched to clonotypes on a single chain only, by using the receptor_arms="any" parameter when running scirpy.tl.define_clonotypes().

Loading data from estabilshed analysis pipelines or AIRR-compliant tools#

We provide convenience functions to load data from 10x CellRanger, BD Rhapsody, TraCeR, or BraCeR with a single function call. Moreover, we support importing data in the community-standard AIRR rearrangement schema.

read_10x_vdj(path[, filtered, include_fields])

Read AIRR data from 10x Genomics cell-ranger output.

read_tracer(path, **kwargs)

Read data from TraCeR ([SLonnbergP+16]).

read_bracer(path, **kwargs)

Read data from BraCeR ([LEM+18]).

read_airr(path[, use_umi_count_col, ...])

Read data from AIRR rearrangement format.

read_bd_rhapsody(path, **kwargs)

Read IR data from the BD Rhapsody Analysis Pipeline.

from_dandelion(dandelion[, transfer, to_mudata])

Import data from Dandelion ([SRB+21]).

Read 10x data#

With read_10x_vdj() we can load filtered_contig_annotations.csv or contig_annotations.json files as they are produced by CellRanger. Here, we demonstrate how to load paired single cell transcriptomics and TCR sequencing data from COVID19 patients from GSE145926 [LLY+20].

# Load the TCR data
adata_tcr = ir.io.read_10x_vdj("example_data/liao-2019-covid19/GSM4385993_C144_filtered_contig_annotations.csv.gz")

# Load the associated transcriptomics data
adata = sc.read_10x_h5("example_data/liao-2019-covid19/GSM4339772_C144_filtered_feature_bc_matrix.h5")
adata.var_names_make_unique()
reading example_data/liao-2019-covid19/GSM4339772_C144_filtered_feature_bc_matrix.h5
 (0:00:00)

This particular sample only has a detected TCR for a small fraction of the cells:

adata_tcr.shape
(136, 0)
adata.shape
(3716, 33539)

Next, we integrate both the TCR and the transcriptomics data into a single MuData object. By convention, gene expression data should be stored in the gex modality, immune receptor data in the airr modality.

mdata = mu.MuData({"gex": adata, "airr": adata_tcr})

Now, we can use TCR-related variables together with the gene expression data. Here, we visualize the cells with a detected TCR on the UMAP plot. It is reassuring that the TCRs coincide with the T-cell marker gene CD3.

sc.pp.log1p(mdata["gex"])
sc.pp.pca(mdata["gex"], svd_solver="arpack")
sc.pp.neighbors(mdata["gex"])
sc.tl.umap(mdata["gex"])
computing PCA
    with n_comps=50
    finished (0:00:01)
computing neighbors
    using 'X_pca' with n_pcs = 50
    finished (0:00:01)
computing UMAP
    finished (0:00:03)
ir.pp.index_chains(mdata)
ir.tl.chain_qc(mdata)
Filtering chains...
Indexing VJ chains...
Indexing VDJ chains...
build result array
Stored result in `mdata.obs["airr:receptor_type"]`.
Stored result in `mdata.obs["airr:receptor_subtype"]`.
Stored result in `mdata.obs["airr:chain_pairing"]`.
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw={"wspace": 0.5})
mu.pl.embedding(mdata, basis="gex:umap", color=["CD3E"], ax=ax0, show=False)
mu.pl.embedding(mdata, basis="gex:umap", color=["airr:receptor_type"], ax=ax1)

Read Smart-seq2 data processed with TraCeR#

TraCeR [SLonnbergP+16] is a method commonly used to extract TCR sequences from data generated with Smart-seq2 or other full-length single-cell sequencing protocols.

The scirpy.io.read_tracer() function obtains its TCR information from the .pkl file in the filtered_TCR_seqs folder TraCeR generates for each cell.

For this example, we load the ~500 cells from triple-negative breast cancer patients from GSE75688 [CEL+17]. The raw data has been processed using the Smart-seq2 pipeline from nf-core.

# extract data
with tarfile.open("example_data/chung-park-2017.tar.bz2", "r:bz2") as tar:
    tar.extractall("example_data/chung-park-2017")

First, we load the transcriptomics data from the counts.tsv file:

expr_chung = pd.read_csv("example_data/chung-park-2017/counts.tsv", sep="\t")
# anndata needs genes in columns and samples in rows
expr_chung = expr_chung.set_index("Geneid").T
adata = sc.AnnData(expr_chung)
adata.shape
(563, 23438)

Next, we load the TCR data and merge it with the transcriptomics data:

adata_tcr = ir.io.read_tracer("example_data/chung-park-2017/tracer/")
mdata = mu.MuData({"gex": adata, "airr": adata_tcr})
sc.pp.highly_variable_genes(mdata["gex"], flavor="cell_ranger", n_top_genes=3000)
sc.pp.log1p(mdata["gex"])
sc.pp.pca(mdata["gex"], svd_solver="arpack")
sc.pp.neighbors(mdata["gex"])
sc.tl.umap(mdata["gex"])
ir.pp.index_chains(mdata)
ir.tl.chain_qc(mdata)
If you pass `n_top_genes`, all cutoffs are ignored.
extracting highly variable genes
    finished (0:00:00)
computing PCA
    on highly variable genes
    with n_comps=50
    finished (0:00:00)
computing neighbors
    using 'X_pca' with n_pcs = 50
    finished (0:00:00)
computing UMAP
    finished (0:00:00)
Filtering chains...
Indexing VJ chains...
Indexing VDJ chains...
build result array
Stored result in `mdata.obs["airr:receptor_type"]`.
Stored result in `mdata.obs["airr:receptor_subtype"]`.
Stored result in `mdata.obs["airr:chain_pairing"]`.
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw={"wspace": 0.5})
mu.pl.embedding(mdata, basis="gex:umap", color=["CD3E"], ax=ax0, show=False)
mu.pl.embedding(mdata, basis="gex:umap", color=["airr:receptor_type"], ax=ax1)

Read an AIRR-compliant rearrangement table#

We generated example data using immuneSIM [WAY+20]. The data consists of 100 cells and does not include transcriptomics data.

The rearrangement tables are often organized into separate tables per chain. Therefore, scirpy.io.read_airr() supports specifiying multiple tsv files at once. This would have the same effect as concatenating them before the import.

adata = ir.io.read_airr(
    [
        "example_data/immunesim_airr/immunesim_tra.tsv",
        "example_data/immunesim_airr/immunesim_trb.tsv",
    ]
)
ir.pp.index_chains(adata)
ir.tl.chain_qc(adata)
Filtering chains...
Indexing VJ chains...
Indexing VDJ chains...
build result array
Stored result in `adata.obs["receptor_type"]`.
Stored result in `adata.obs["receptor_subtype"]`.
Stored result in `adata.obs["chain_pairing"]`.

The dataset does not come with transcriptomics data. We can, therefore, not show the UMAP plot highlighting cells with TCRs, but we can still use scirpy to analyse it. Below, we visualize the clonotype network connecting cells with similar CDR3 sequences.

Note: The cutoff of 25 was chosen for demonstration purposes on this small sample dataset. Usually a smaller cutoff is more approriate.

ir.pp.ir_dist(adata, metric="tcrdist", sequence="aa", cutoff=25)
Computing sequence x sequence distance matrix for VJ sequences.
Computing sequence x sequence distance matrix for VDJ sequences.
ir.tl.define_clonotype_clusters(
    adata,
    metric="tcrdist",
    sequence="aa",
    receptor_arms="any",
    dual_ir="primary_only",
)
ir.tl.clonotype_network(adata, size_aware=False, metric="tcrdist", sequence="aa")
ir.pl.clonotype_network(
    adata,
    color="cc_aa_tcrdist",
    base_size=20,
    panel_size=(6, 6),
    show_legend=False,
    show_size_legend=False,
)
Initializing lookup tables.
Computing clonotype x clonotype distances.
Stored result in `adata.obs["cc_aa_tcrdist"]`.
Stored result in `adata.obs["cc_aa_tcrdist_size"]`.
<Axes: title={'center': 'cc_aa_tcrdist'}>
../_images/a8276df9c7f1e34b929aa463e70e59d4ef67a7762c7eb1cac217afe722d3d2a9.png

Creating AnnData objects from other formats#

Often, immune receptor (IR) data are just provided as a simple table listing the CDR3 sequences for each cell. We provide a generic data structure for cells with IRs, which can then be converted into an AnnData object.

AirrCell(cell_id[, cell_attribute_fields, ...])

Data structure for a Cell with immune receptors.

from_airr_cells(airr_cells[, key_added])

Convert a collection of AirrCell objects to AnnData.

If you believe you are working with a commonly used format, consider sending a feature request for a read_XXX function.

For this example, we again load the triple-negative breast cancer data from [CEL+17]. However, this time, we retrieve the TCR data from a separate summary table containing the TCR information (we generated this table for the sake of the example, but it could very well have been a supplementary file from the paper).

Such a table typically contains information about

  • CDR3 sequences (amino acid and/or nucleotide)

  • The Chain locus, e.g. TRA, TRB, or IGH.

  • expression of the receptor chain (e.g. count, UMI, transcripts per million (TPM))

  • the V(D)J genes for each chain

  • information if the chain is productive.

tcr_table = pd.read_csv(
    "example_data/chung-park-2017/tcr_table.tsv",
    sep="\t",
    index_col=0,
    na_values=["None"],
    true_values=["True"],
)
tcr_table
cell_id cdr3_alpha cdr3_nt_alpha count_alpha v_alpha j_alpha cdr3_beta cdr3_nt_beta count_beta v_beta d_beta j_beta productive_alpha productive_beta
0 SRR2973278 AVSDIHASGGSYIPT GCTGTTTCGGATATTCATGCATCAGGAGGAAGCTACATACCTACA 9.29463 TRAV21 TRAJ6 ASSWWQNTEAF GCCAGCAGCTGGTGGCAGAACACTGAAGCTTTC 37.5984 TRBV5-1 NaN TRBJ1-1 True True
1 SRR2973305 AVVTGANSKLT GCTGTGGTAACTGGAGCCAATAGTAAGCTGACA 89.45740 TRAV22 TRAJ56 NaN NaN NaN NaN NaN NaN True True
2 SRR2973371 ALKRTGNTPLV GCTCTGAAAAGAACAGGAAACACACCTCTTGTC 431.96500 TRAV9-2 TRAJ29 ASRSRDSGEPQH GCCAGCAGGAGCAGGGACAGCGGAGAGCCCCAGCAT 952.0230 TRBV10-2 TRBD1 TRBJ1-5 True True
3 SRR2973377 ATDPETSGSRLT GCTACGGACCCAGAAACCAGTGGCTCTAGGTTGACC 772.43600 TRAV17 TRAJ58 NaN NaN NaN NaN NaN NaN True True
4 SRR2973403 AVRGATDSWGKFQ GCTGTGAGAGGAGCAACTGACAGCTGGGGGAAATTCCAG 95.63640 TRAV3 TRAJ24 SVQTSEYEQY AGCGTCCAGACTAGCGAGTACGAGCAGTAC 205.8330 TRBV29-1 TRBD2 TRBJ2-7 True True
... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
85 SRR5023618 NaN NaN NaN NaN NaN ASSDSPFSSYNEQF GCCAGCAGTGACTCGCCCTTTAGCTCCTACAATGAGCAGTTC 864.4550 TRBV6-4 NaN TRBJ2-1 True True
86 SRR5023621 AENSGGSNYKLT GCAGAGAATAGTGGAGGTAGCAACTATAAACTGACA 512.63000 TRAV13-2 TRAJ53 ASSPDGGGGYT GCCAGCAGCCCTGATGGGGGAGGGGGCTACACC 805.2010 TRBV7-3 TRBD2 TRBJ1-2 True True
87 SRR5023626 ALRIGSNYKLT GCTCTGAGAATCGGTAGCAACTATAAACTGACA 12.51630 TRAV9-2 TRAJ53 NaN NaN NaN NaN NaN NaN True True
88 SRR5023633 NaN NaN NaN NaN NaN ASGLGQSVGGTQY GCTAGTGGCCTAGGGCAGTCGGTAGGAGGGACCCAGTAC 18.4273 TRBV12-5 TRBD2 TRBJ2-5 True True
89 SRR5023639 NaN NaN NaN NaN NaN ASSKGSLGPAGELF GCCAGCAGCAAAGGATCGCTGGGGCCCGCCGGGGAGCTGTTT 905.9260 TRBV21-1 TRBD1 TRBJ2-2 True True

90 rows × 14 columns

Our task is now to dissect the table into AirrCell objects. Each AirrCell can have an arbitrary number of chains. A chain is simply represented as a Python dictionary following the AIRR Rearrangement Schema.

tcr_cells = []
for _, row in tcr_table.iterrows():
    cell = ir.io.AirrCell(cell_id=row["cell_id"])
    # some fields are mandatory according to the Rearrangement standard, but can be set to NULL
    # the `empty_chain_dict()` function provides a dictionary with all mandatory fields, but set to NULL.
    alpha_chain = ir.io.AirrCell.empty_chain_dict()
    beta_chain = ir.io.AirrCell.empty_chain_dict()
    alpha_chain.update(
        {
            "locus": "TRA",
            "junction_aa": row["cdr3_alpha"],
            "junction": row["cdr3_nt_alpha"],
            "consensus_count": row["count_alpha"],
            "v_call": row["v_alpha"],
            "j_call": row["j_alpha"],
            "productive": row["productive_alpha"],
        }
    )
    beta_chain.update(
        {
            "locus": "TRB",
            "junction_aa": row["cdr3_beta"],
            "junction": row["cdr3_nt_beta"],
            "consensus_count": row["count_beta"],
            "v_call": row["v_beta"],
            "d_call": row["d_beta"],
            "j_call": row["j_beta"],
            "productive": row["productive_beta"],
        }
    )
    cell.add_chain(alpha_chain)
    cell.add_chain(beta_chain)
    tcr_cells.append(cell)

Now, we can convert the list of AirrCell objects using scirpy.io.from_airr_cells().

adata_tcr = ir.io.from_airr_cells(tcr_cells)
# We can re-use the transcriptomics data from above...
adata = sc.AnnData(expr_chung)
# ... and merge it with the TCR data
mdata = mu.MuData({"gex": adata, "airr": adata_tcr})
sc.pp.highly_variable_genes(mdata["gex"], flavor="cell_ranger", n_top_genes=3000)
sc.pp.log1p(mdata["gex"])
sc.pp.pca(mdata["gex"], svd_solver="arpack")
sc.pp.neighbors(mdata["gex"])
sc.tl.umap(mdata["gex"])
ir.pp.index_chains(mdata)
ir.tl.chain_qc(mdata)
If you pass `n_top_genes`, all cutoffs are ignored.
extracting highly variable genes
    finished (0:00:00)
computing PCA
    on highly variable genes
    with n_comps=50
    finished (0:00:00)
computing neighbors
    using 'X_pca' with n_pcs = 50
    finished (0:00:00)
computing UMAP
    finished (0:00:00)
Filtering chains...
Indexing VJ chains...
Indexing VDJ chains...
build result array
Stored result in `mdata.obs["airr:receptor_type"]`.
Stored result in `mdata.obs["airr:receptor_subtype"]`.
Stored result in `mdata.obs["airr:chain_pairing"]`.
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(10, 4), gridspec_kw={"wspace": 0.5})
mu.pl.embedding(mdata, basis="gex:umap", color=["CD3E"], ax=ax0, show=False)
mu.pl.embedding(mdata, basis="gex:umap", color=["airr:receptor_type"], ax=ax1)

Combining multiple samples#

It is quite common that the sequncing data is split up in multiple samples. To combine them into a single object, we load each sample independently using one of the approaches described in this document. Then, we combine them using anndata.concat().

MuData currently does not implement a concat function (see scverse/mudata#20). Therefore, we need to first concatenate gene expression and AIRR data separately and create the MuData object as the last step.

Here is a full example loading and combining three samples from the COVID19 study by [LLY+20].

# define sample metadata. Usually read from a file.
samples = {
    "C144": {"group": "mild"},
    "C146": {"group": "severe"},
    "C149": {"group": "healthy control"},
}
# Create a list of AnnData objects (one for each sample)
adatas_tcr = {}
adatas_gex = {}
for sample in samples.keys():
    gex_file = glob(f"example_data/liao-2019-covid19/*{sample}*.h5")[0]
    tcr_file = glob(f"example_data/liao-2019-covid19/*{sample}*.csv.gz")[0]
    adata_gex = sc.read_10x_h5(gex_file)
    adata_tcr = ir.io.read_10x_vdj(tcr_file)
    # concatenation only works with unique gene names
    adata_gex.var_names_make_unique()
    adatas_tcr[sample] = adata_tcr
    adatas_gex[sample] = adata_gex
reading example_data/liao-2019-covid19/GSM4339772_C144_filtered_feature_bc_matrix.h5
 (0:00:00)
reading example_data/liao-2019-covid19/GSM4339774_C146_filtered_feature_bc_matrix.h5
 (0:00:00)
reading example_data/liao-2019-covid19/GSM4475052_C149_filtered_feature_bc_matrix.h5
(0:00:00)
WARNING: Non-standard locus name: Multi
# Merge anndata objects
adata_gex = anndata.concat(adatas_gex, index_unique="_")
adata_tcr = anndata.concat(adatas_tcr, index_unique="_")
mdata = mu.MuData({"gex": adata_gex, "airr": adata_tcr})

# Set global metadata on `mdata.obs`
mdata.obs["sample"] = mdata.obs_names.to_series().str.split("_", expand=True)[1]
mdata.obs["group"] = mdata.obs["sample"].map(lambda x: samples[x]["group"])

The data is now integrated in a single object. Again, the detected TCRs coincide with CD3E gene expression. We clearly observe batch effects between the samples – for a meaningful downstream analysis further processing steps such as highly-variable gene filtering and batch correction are necessary.

mdata
MuData object with n_obs × n_vars = 10715 × 33539
  obs:	'sample', 'group'
  2 modalities
    gex:	10706 x 33539
    airr:	581 x 0
      obsm:	'airr'
sc.pp.log1p(mdata["gex"])
sc.pp.pca(mdata["gex"], svd_solver="arpack")
sc.pp.neighbors(mdata["gex"])
sc.tl.umap(mdata["gex"])
ir.pp.index_chains(mdata)
ir.tl.chain_qc(mdata)
computing PCA
    with n_comps=50
    finished (0:00:11)
computing neighbors
    using 'X_pca' with n_pcs = 50
    finished (0:00:10)
computing UMAP
    finished (0:00:03)
Filtering chains...
Indexing VJ chains...
Indexing VDJ chains...
build result array
Stored result in `mdata.obs["airr:receptor_type"]`.
Stored result in `mdata.obs["airr:receptor_subtype"]`.
Stored result in `mdata.obs["airr:chain_pairing"]`.
fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(15, 4), gridspec_kw={"wspace": 0.5})
mu.pl.embedding(mdata, basis="gex:umap", color="CD3E", ax=ax0, show=False)
mu.pl.embedding(mdata, basis="gex:umap", color="sample", ax=ax1, show=False)
mu.pl.embedding(mdata, basis="gex:umap", color="airr:receptor_type", ax=ax2)