scirpy.tl.clonotype_network#
- scirpy.tl.clonotype_network(adata, *, sequence='nt', metric='identity', min_cells=1, min_nodes=1, layout='components', size_aware=True, base_size=None, size_power=1, layout_kwargs=None, clonotype_key=None, key_added='clonotype_network', inplace=True, random_state=42, airr_mod='airr', mask_obs=None)#
Computes the layout of the clonotype network.
Requires running
scirpy.tl.define_clonotypes()
orscirpy.tl.define_clonotype_clusters()
first.The clonotype network usually consists of many disconnected components, each of them representing a clonotype. Each node represents cells with an identical receptor configuration (i.e. identical CDR3 sequences, and identical v genes if
same_v_gene
was specified during clonotype definition). The size of each dot refers to the number of cells with the same receptor configurations.For more details on the clonotype definition, see
scirpy.tl.define_clonotype_clusters()
and the respective section in the tutorial.Singleton clonotypes can be filtered out with the
min_cells
andmin_nodes
parameters.The
components
layout algorithm takes node sizes into account, avoiding overlapping nodes. Therefore, we recommend specifyingbase_size
andsize_power
already here instead of providing them toscirpy.pl.clonotype_network()
.Stores coordinates of the clonotype network in
adata.obsm
.- Parameters:
adata (
Union
[AnnData
,MuData
,DataHandler
]) – AnnData or MuData object that contains AIRR information.sequence (
Literal
['aa'
,'nt'
] (default:'nt'
)) – Thesequence
parameterscirpy.tl.define_clonotypes()
was ran with.metric (
Union
[Literal
['alignment'
,'fastalignment'
,'identity'
,'levenshtein'
,'hamming'
,'normalized_hamming'
,'tcrdist'
],DistanceCalculator
] (default:'identity'
)) – Themetric
parameterscirpy.tl.define_clonotypes()
was ran with.min_cells (
int
(default:1
)) – Only show clonotypes consisting of at leastmin_cells
cellsmin_nodes (
int
(default:1
)) – Only show clonotypes consisting of at leastmin_nodes
nodes (i.e. non-identical receptor configurations)layout (
str
(default:'components'
)) – The layout algorithm to use. Can be anything supported byigraph.Graph.layout
, or “components” to layout all connected components individually.scirpy.util.graph.layout_components()
for more details.size_aware (
bool
(default:True
)) – IfTrue
, use a node-size aware layouting algorithm. This option is only compatible withlayout = 'components'
.base_size (
Optional
[float
] (default:None
)) – Size of a point respresenting 1 cell. Per default, this value is a automatically determined based on the number of nodes in the plot.size_power (
float
(default:1
)) – Sizes are raised to the power of this value. Set this to, e.g. 0.5 to dampen point size.layout_kwargs (
Optional
[dict
] (default:None
)) – Will be passed to the layout functionclonotype_key (
Optional
[str
] (default:None
)) – Key under which the result ofscirpy.tl.define_clonotypes()
orscirpy.tl.define_clonotype_clusters()
is stored inadata.uns
. Defaults toclone_id
ifsequence == 'nt' and distance == 'identity'
orcc_{sequence}_{metric}
otherwise.key_added (
str
(default:'clonotype_network'
)) – Key under which the layout coordinates will be stored inadata.obsm
and parameters will be stored inadata.uns
.inplace (
bool
(default:True
)) – IfTrue
, store the coordinates inadata.obsm
, otherwise return them.random_state (default:
42
) – Random seed set before computing the layout.airr_mod (default:
'airr'
) – Name of the modality with AIRR information is stored in theMuData
object. if anAnnData
object is passed to the function, this parameter is ignored.mask_obs (
Union
[ndarray
[bool
],str
,None
] (default:None
)) – Boolean mask or the name of the column in anndata.obs that contains the boolean mask to select cells to filter the clonotype clusters that should be displayed in the graph. Only connected modules in the clonotype distance graph that contain at least one of these cells will be shown. Can be set to None to avoid filtering.
- Return type:
- Returns:
Depending on the value of
inplace
returns either nothing or the computed coordinates.