scirpy.tl.clonotype_network#
- scirpy.tl.clonotype_network(adata, *, sequence='nt', metric='identity', min_cells=1, min_nodes=1, layout='components', size_aware=True, base_size=None, size_power=1, layout_kwargs=None, clonotype_key=None, key_added='clonotype_network', inplace=True, random_state=42, airr_mod='airr')#
Computes the layout of the clonotype network.
Requires running
scirpy.tl.define_clonotypes()
orscirpy.tl.define_clonotype_clusters()
first.The clonotype network usually consists of many disconnected components, each of them representing a clonotype. Each node represents cells with an identical receptor configuration (i.e. identical CDR3 sequences, and identical v genes if
same_v_gene
was specified during clonotype definition). The size of each dot refers to the number of cells with the same receptor configurations.For more details on the clonotype definition, see
scirpy.tl.define_clonotype_clusters()
and the respective section in the tutorial.Singleton clonotypes can be filtered out with the
min_cells
andmin_nodes
parameters.The
components
layout algorithm takes node sizes into account, avoiding overlapping nodes. Therefore, we recommend specifyingbase_size
andsize_power
already here instead of providing them toscirpy.pl.clonotype_network()
.Stores coordinates of the clonotype network in
adata.obsm
.- Parameters:
adata (
Union
[AnnData
,MuData
,DataHandler
]) – AnnData or MuData object that contains AIRR information.sequence (
Literal
['aa'
,'nt'
] (default:'nt'
)) – Thesequence
parameterscirpy.tl.define_clonotypes()
was ran with.metric (
Union
[Literal
['alignment'
,'fastalignment'
,'identity'
,'levenshtein'
,'hamming'
,'normalized_hamming'
,'tcrdist'
],DistanceCalculator
] (default:'identity'
)) – Themetric
parameterscirpy.tl.define_clonotypes()
was ran with.min_cells (
int
(default:1
)) – Only show clonotypes consisting of at leastmin_cells
cellsmin_nodes (
int
(default:1
)) – Only show clonotypes consisting of at leastmin_nodes
nodes (i.e. non-identical receptor configurations)layout (
str
(default:'components'
)) – The layout algorithm to use. Can be anything supported byigraph.Graph.layout
, or “components” to layout all connected components individually.scirpy.util.graph.layout_components()
for more details.size_aware (
bool
(default:True
)) – IfTrue
, use a node-size aware layouting algorithm. This option is only compatible withlayout = 'components'
.base_size (
Optional
[float
] (default:None
)) – Size of a point respresenting 1 cell. Per default, this value is a automatically determined based on the number of nodes in the plot.size_power (
float
(default:1
)) – Sizes are raised to the power of this value. Set this to, e.g. 0.5 to dampen point size.layout_kwargs (
Optional
[dict
] (default:None
)) – Will be passed to the layout functionclonotype_key (
Optional
[str
] (default:None
)) – Key under which the result ofscirpy.tl.define_clonotypes()
orscirpy.tl.define_clonotype_clusters()
is stored inadata.uns
. Defaults toclone_id
ifsequence == 'nt' and distance == 'identity'
orcc_{sequence}_{metric}
otherwise.key_added (
str
(default:'clonotype_network'
)) – Key under which the layout coordinates will be stored inadata.obsm
and parameters will be stored inadata.uns
.inplace (
bool
(default:True
)) – IfTrue
, store the coordinates inadata.obsm
, otherwise return them.random_state (default:
42
) – Random seed set before computing the layout.airr_mod (default:
'airr'
) – Name of the modality with AIRR information is stored in theMuData
object. if anAnnData
object is passed to the function, this parameter is ignored.
- Return type:
- Returns:
Depending on the value of
inplace
returns either nothing or the computed coordinates.